1998 The Andromedan Design Company
A Short History Of Microfiber

Man-Made Fibers - Microfiber

Polyesters, e.g., Dacron, produced by the polymerization of the product of an alcohol and organic-acid reaction, are strong and wrinkle-resistant. Microfiber, which was introduced in 1986, is a variety of polyester that has extremely thin filaments. One cannot overstate the importance of Microfiber to our civilization.  As a synthetic it provides humans with control over its supply. It is tough, resilient, and can be manufactured to extremely fine tolerances, many times thinner than other synthetics. It is this strength, precision and absolute sheerness as well as its phenomenal absorbency that give rise to so many applications, including an amazing ability to clean and dry surfaces. Now microfiber (specifically polyester) as the sole constituent of a cloth will wear and shed fiber with use, so it is best utilized (as it is in Googalies) in combination with Nylon.  Nylon, a synthetic thermoplastic material introduced in 1938, is strong, elastic, resistant to abrasion and chemicals, and low in moisture absorbency.


Home of Googalies

What are Googalies?

The Many Uses of Googalies

Information for Prospective Dealers

The Latest Products From Andromedan Micro

Cllick Here to Order

Click Here To Visit Our New Scrapbooking With Googalies Site

Click here 
for the World's Finest 
Musical Instrument ClothsWhen combined with the polyester microfiber in just the right combination, a cloth results with the advantages of both synthetics. Too much nylon will result in a cloth that will scratch fine or delicate surfaces like coated optics or fine wood or paint finishes. Too little nylon and the cloth will not last or clean rough surfaces like guitar strings without rapid deterioration. It is this perfect combination of microfiber and nylon that make Googalies the wonder it is. Many of you may find it interesting to more completely explore the evolution of man-made or synthetic fibers so we have provided below and brief yet comprehensive history of these wonderful inventions below.

Natural Fibers

Historically, the use of fiber was limited to those fibers available in the natural world. However, cotton and linen wrinkled from wear and washings;  Silk required delicate handling; Wool shrank, and was irritating to the touch. Only a century ago, rayon - the first manufactured fiber - was developed. Fiber chemistry for endless application began.

Manufactured (man-made) fibers are now found in modern apparel, home furnishings, medicine, aeronautics, energy, industry, and more. Fiber engineers can combine, modify and tailor fibers in ways far beyond the performance limits of fiber drawn from natural sources such as the silkworm cocoon that is grown in the fields, or spun from the fleece of animals. The table below illustrates the evolution of man-made fibers.

First Commercial U.S. Fiber Production

1910 — Rayon 1924 — Acetate 1930 — Rubber
1936 — Glass 1939 — Nylon 1939 — Vinyon
1941 — Saran 1946 — Metallic 1949 — Modacrylic
1949 — Olefin 1950 — Acrylic 1953 — Polyester
1959 — Spandex 1961 — Aramid 1983 — PBI
1983 — Sulfar 1986 — Microfiber 1992 — Lyocell

The Early Attempts

The first patent for "artificial silk" was granted in England in 1855 to a Swiss chemist named Audemars. He dissolved the fibrous inner bark of a mulberry tree, chemically modifying it to produce cellulose. He formed threads by dipping needles into this solution and drawing them out - but it never occurred to him to emulate the silkworm by extruding the cellulosic liquid through a small hole.

In the early 1880's, Sir Joseph W. Swan, an English chemist and electrician, was spurred to action by Thomas Edison's new incandescent electric lamp. He experimented with forcing a liquid similar to Audemars solution through fine holes into a coagulating bath. His fibers worked like carbon filament, and they found early use in Edison's invention. It also occurred to Swan that his filament could be used to make textiles. In 1885, he exhibited in London some fabrics crocheted by his wife from his new fiber.

First Commercial Production

The first commercial scale production of a manufactured fiber was achieved by French chemist Count Hilaire de Chardonnet. In 1889, his fabrics of "artificial silk" caused a sensation at the Paris Exhibition. Two years later, he built the first commercial rayon plant at Besancon, France, and secured his fame as the "father of the rayon industry."

Several attempts to produce "artificial silk" in the United States were made during the early 1900's, but none were commercially successful until the American Viscose Company, formed by Samuel Courtaulds and Co., Ltd., began its production of rayon in 1910.

In 1893, Arthur D. Little of Boston, invented yet another cellulosic product - acetate - and developed it as a film. By 1910, Camille and Henry Dreyfus were making acetate motion picture film and toilet articles in Basel, Switzerland. During World War I, they built a plant in England to produce cellulose acetate dope for airplane wings and other commercial products. Upon entering the War, the United States government invited the Dreyfus brothers to build a plant in Maryland to make the product for American warplanes. The first commercial textile uses for acetate in fiber form were developed by the Celanese Company in 1924.

In the meantime, U.S. rayon production was growing to meet increasing demand. By the mid-1920's, textile manufacturers could purchase the fiber for half the price of raw silk.

So began manufactured fibers' gradual conquest of the American fiber market. This modest start in the 1920's grew to nearly 70% of the national market for fiber by the last decade of the century.

Nylon - The "Miracle" Fiber

In September 1931, American chemist Wallace Carothers reported on research carried out in the laboratories of the DuPont Company on "giant" molecules called polymers. He focused his work on a fiber referred to simply as "66", a number derived from its molecular structure. Nylon, the "miracle fiber," was born. The Chemical Heritage Foundation is currently featuring an exhibit on the history of nylon.

By 1938, Paul Schlack of the I.G. Farben Company in Germany, polymerized caprolactam and created a different form of the polymer, identified simply as nylon "6."

Nylon's advent created a revolution in the fiber industry. Rayon and acetate had been derived from plant cellulose, but nylon was synthesized completely from petrochemicals. It established the basis for the ensuing discovery of an entire new world of manufactured fibers.

An American Romance

DuPont began commercial production of nylon in 1939. The first experimental testing used nylon as sewing thread in parachute fabric, and in women's hosiery. Nylon stockings were shown in February 1939 at the San Francisco Exposition - and the most exciting fashion innovation of the age was underway.

American women had only a sampling of the beauty and durability of their first pairs of nylon hose when their romance with the new fabric was cut short. The United States entered World War II in December 1941 and the War Production Board allocated all production of nylon for military use. Nylon hose, which sold for $1.25 a pair before the War, moved in the black market at $10. Wartime pin-ups and movie stars, like Betty Grable, auctioned nylon hose for as much as $40,000 a pair in war-effort drives.

During the War, nylon replaced Asian silk in parachutes. It also found use in tires, tents, ropes, ponchos, and other military supplies, and even was used in the production of a high-grade paper for U.S. currency. At the outset of the War, cotton was king of fibers, accounting for more than 80% of all fibers used. Manufactured and wool fibers shared the remaining 20%. By the end of the War in August 1945, cotton stood at 75% of the fiber market. Manufactured fibers had risen to 15%.

The Post-War Industry

After the war, GI's came home, families were reunited, industrial America gathered its peacetime forces, and economic growth surged. The conversion of nylon production to civilian uses started and when the first small quantities of postwar nylon stockings were advertised, thousands of frenzied women lined up at New York department stores to buy.

In the immediate post-war period, most nylon production was used to satisfy this enormous pent up demand for hosiery. But by the end of the 1940's, it was also being used in carpeting and automobile upholstery. At the same time, three new generic manufactured fibers started production. Dow Badische Company (today, BASF Corporation) introduced metalized fibers; Union Carbide Corporation developed modacrylic fiber; and Hercules, Inc. added olefin fiber. Manufactured fibers continued their steady march.

By the 1950's, the industry was supplying more than 20% of the fiber needs of textile mills. A new fiber, ""acrylic,"" was added to the list of generic names, as DuPont began production of this wool-like product.

Meanwhile, polyester, first examined as part of the Wallace Carothers early research, was attracting new interest at the Calico Printers Association in Great Britain. There, J. T. Dickson and J. R. Whinfield produced a polyester fiber by condensation polymerization of ethylene glycol with terephthalic acid. DuPont subsequently acquired the patent rights for the United States and Imperial Chemical Industries for the rest of the world. A host of other producers soon joined in.

A Wash and Wear Revolution

In the summer of 1952, "wash and wear" was coined to describe a new blend of cotton and acrylic. The term eventually was applied to a wide variety of manufactured fiber blends. Commercial production of polyester fiber transformed the "wash and wear" novelty into a revolution in textile product performance.

Polyester's commercialization in 1953 was accompanied by the introduction of triacetate. The majority of the 20th century's basic manufactured fibers now had been discovered, and the industry's engineers turned to refining their chemical and physical properties to extend their use across the American economy.

In the 1960's and 1970's consumers bought more and more clothing made with polyester. Clotheslines were replaced by electric dryers, and the "wash and wear" garments they dried emerged wrinkle free. Ironing began to shrink away on the daily list of household chores. Fabrics became more durable and color more permanent. New dyeing effects were being achieved and shape-retaining knits offered new comfort and style.

Endless Possibilities

In the 1960's, manufactured fiber production accelerated as it was spurred on by continuous fiber innovation. The revolutionary new fibers were modified to offer greater comfort, provide flame resistance, reduce clinging, release soil, achieve greater whiteness, special dullness or luster, easier dyeability, and better blending qualities. New fiber shapes and thicknesses were introduced to meet special needs. Spandex, a stretchable fiber; aramid, a high-temperature-resistant polyamide; and para-aramid, with outstanding strength-to-weight properties, were introduced into the marketplace.

In the early 1960's, manufactured fiber accounted for nearly 30% of American textile mill consumption. By 1965, the manufactured fiber industry was providing over 40% of the nation's fiber needs.

One dramatic new set of uses for manufactured fibers came with the establishment of the U.S. space program. The industry provided special fiber for uses ranging from clothing for the astronauts to spaceship nose cones. When Neil Armstrong took "One small step for man, one giant leap for mankind," on the moon on July 20, 1969, his lunar space suit included multi-layers of nylon and aramid fabrics. The flag he planted was made of nylon.

Today, the exhaust nozzles of the two large booster rockets that lift the space shuttle into orbit contain 30,000 pounds of carbonized rayon. Carbon fiber composites are used in as structural components in the latest commercial aircraft, adding strength and lowering weight and fuel costs.

Safety and Energy Challenges

The early 1970's saw a wave of consumer protection demands, most notably one for a mandated Federal flammability standard for children's sleepwear. The manufactured fiber industry spent $20 million on flammability research and development in 1972 and 1973, and manufactured fiber fabrics became predominant in this market. Flammability standards were also issued for carpet and other products. In the U.S. carpet market, 99% of all surface fibers are now manufactured fibers.

In late 1973, when the Nation was struck by a severe energy crisis, the manufactured fiber industry reduced the energy required to produce a pound of fiber by 26%. By then, the industry was using but 1% of the Nation's petroleum supply to provide two-thirds of all fibers used by American textile mills.


Innovation is the hallmark of the manufactured fiber industry. Fibers more numerous and diverse than any found in nature are now routinely created in the industry's laboratories.

Nylon variants, polyester, and olefin are used to produce carpets that easily can be rinsed clean — even 24 hours after they've been stained. Stretchable spandex and machine-washable, silk-like polyesters occupy solid places in the U.S. apparel market. The finest microfiber is remaking the world of fashion.

For industrial uses, manufactured fibers relentlessly replace traditional materials in applications from super-absorbent diapers, to artificial organs, to construction materials for moon-based space stations. Engineered non-woven products of manufactured fibers are found in applications from surgical gowns and apparel interfacing to roofing materials, road bed stabilizers, and floppy disk envelopes and liners. Non-woven fabrics, stiff as paper or as soft and comfortable as limp cloth, are made without knitting or weaving.

|What are Googalies|Applications|Microfiber|Dealers|New Products|Order|Scrapbooking|Guitar Cloths|

For more information
contact us at:


1998 The Andromedan Design Company
1998 The Andromedan Design Company